
Rule Mining with RuM

Anti Alman
University of Tartu

anti.alman@ut.ee

Claudio Di Ciccio
Sapienza University of Rome

diciccio@di.uniroma1.it

Dominik Haas
WU Vienna

dominik.haas@s.wu.ac.at

Fabrizio Maria Maggi
Free University of Bolzano

maggi@inf.unibz.it

Alexander Nolte
University of Tartu

alexander.nolte@ut.ee

Abstract—Declarative process modeling languages are espe-
cially suitable to model loosely-structured, unpredictable business
processes. One of the most prominent of these languages is
Declare. The Declare language can be used for all process mining
branches and a plethora of techniques have been implemented
to support process mining with Declare. However, using these
techniques can become cumbersome in practical situations where
different techniques need to be combined for analysis. In addition,
the use of Declare constraints in practice is often hampered
by the difficulty of modeling them: the formal expression of
Declare is difficult to understand for users without a background
in temporal logics, whereas its graphical notation has been
shown to be unintuitive. In this paper, we present RuM, a
novel application for rule mining that addresses the above-
mentioned issues by integrating multiple Declare-based process
mining methods into a single unified application. The process
mining techniques provided in RuM strongly rely on the use
of Declare models expressed in natural language, which has the
potential of mitigating the barriers of the language bias. The
application has been evaluated by conducting a qualitative user
evaluation with eight process analysts.

Index Terms—Rule Mining, Process Analytics Tool, Declarative
Process Models, Natural Language Processing

I. INTRODUCTION

Business Process Management (BPM) has become an inte-

gral part of how companies organize their workflows starting

from the higher levels of management as recommended by ISO

9001 Quality Management Principles (especially principles 4

and 6) [1] to modeling and optimizing lower level processes

through the use of various process mining techniques [2].

Process mining is the part of BPM that is focused on the

analysis of business processes based on process execution logs

(event logs). Process mining techniques can be based on two

different approaches for representing process models that are

used as their input and/or output: procedural process models

or declarative process models.

Procedural process models aim at describing end-to-end

processes and allow only for the process behavior that is

explicitly specified in the model [3]. However, modeling step

by step the entire control-flow of a business process can be

cumbersome in some cases. For example, if the process is

loosely-structured and has a high number of different paths

and exceptions the model could become quickly unreadable. In

these cases, it may be a better choice to use declarative process

models that model the process as a set of rules that the process

should follow. In this way, everything that is not constrained

is allowed and several execution paths can be represented in

a compact model.

In contrast with the multiple process mining applications

available for working with procedural models, there are cur-

rently no similar applications for working with declarative

models [4]. This lack of a comprehensive toolset can be con-

sidered as one of the main contributing factors of the relatively

low adoption rate of Declare in the industry and has been

named as one of the open research challenges in declarative

process mining [5, RC7]. In addition to this, dealing with

declarative process models is known to be difficult, especially

for domain experts that generally lack expertise in temporal

logics and, in most of the cases, find the graphical notation of

Declare constraints unintuitive [6].
In this paper, we present RuM,1 a novel process mining

application that addresses these research challenges by in-

tegrating multiple Declare-based process mining techniques

into a single unified application and by largely making use

of natural language to express Declare constraints. With this

tool, the user is not required to have any experience in tem-

poral logics nor to be familiar with the graphical notation of

Declare constraints, but can handle temporal properties using

natural language statements. RuM implements process mining

techniques based on MP-Declare [7] the multi-perspective

extension of Declare supporting data constraints together with

control-flow constraints. RuM also provides a model editor

that is fully MP-Declare compliant and equipped with a chat-

bot that supports inexpert users in defining Declare constraints

using natural language expressions.
To assess the feasibility of RuM, we conducted a qualitative

user evaluation. Our aim was to (1) gain insights into how

users from different backgrounds perceived the application and

(2) identify means for improving it. In general, the application

was well received and it was recognized to be timely and

highly needed by all participants.
The remainder of this paper is structured as follows.

Section II gives a short overview of the Declare language.

Section III discusses the main design goals of RuM. Section IV

gives an overview of the functionalities of RuM and lists

the process mining techniques available in the application.

Section V describes the user evaluation methodology and pro-

vides an overview of the evaluation results. Finally, Section VI

concludes the paper and spells out directions for future work.

II. BASICS OF DECLARE

Declare is a modeling language that uses a constraint-based

declarative approach to model loosely-structured processes

1https://rulemining.org

114

2020 2nd International Conference on Process Mining (ICPM)

978-1-7281-9832-3/20/$31.00 ©2020 IEEE
DOI 10.1109/ICPM49681.2020.00027

TABLE I
SOME DECLARE TEMPLATES

Template Explanation Notation

Unary constraints

EXISTENCE(x) Activity x occurs at
least once per trace x

Existence

INIT(x) Activity x occurs at
the beginning of ev-
ery trace

x

Init

Binary constraints

RESPONSE(x,y) If x occurs, then y
must occur eventu-
ally after x

x y

CHAINRESPONSE(x,y) If x occurs, then y
must occur immedi-
ately after x

x y

PRECEDENCE(x,y) y occurs only if pre-
ceded by x

x y

through behavioral constraints [8]. The language is grounded

in linear temporal logic over finite traces [8], [9].

Declare is based on templates, which are parameterized

temporal logic patterns and come endowed with a graphical

notation to ease the depiction of process maps. To define

process models using Declare, no knowledge of the underlying

formal logic is required since Declare templates can also be

expressed as natural language sentences. Declare constraints

are concrete instantiations of templates obtained by replacing

template parameters with real activities.

Table I shows some templates that will be used throughout

the paper. Unary templates exert conditions on the occurrence

of single activities. For example, EXISTENCE(x) requires

activity x to occur in a trace. Binary templates predicate over

pairs of activities. For instance, RESPONSE(x,y) imposes that

if x occurs, then y must eventually occur afterward. Binary

templates partition their parameters into an activation and a tar-

get. The activation triggers the constraint, like the antecedent

of a logical implication (e.g., x for RESPONSE(x,y)). The

target is subject to the restriction exerted by the occurrence

of the activation, like the consequent of a logical implication

(e.g., y for RESPONSE(x,y)). Declare also includes negative
versions of the binary templates: e.g., NOTRESPONSE(x,y)

states that if x occurs, no y can occur afterward.

A Declare model consists of a set of constraints that

hold under logical conjunction. The behavioral semantics of

every constraint can be represented by means of a finite-state

automaton. A Declare model can thus be represented as a

finite-state automaton stemming from the synchronous product

of the automata of the single constraints [10].

More recently, the addition of conditions that predicate not

only on activities and their control-flow, but also on data

attributes and timestamps led to the definition of an extension

IV antibiotics

ER registration

ER triage ER sepsis triage Lactic acid

[SIRSCriteria2OrMore ↦ ⊤] Init

[org:group is different] [time:timestamp in [0,3]ℎ]

Existence

Fig. 1. An MP-Declare map

of standard Declare, namely MP-Declare [7]. Depending on

the parameters on which data conditions insist, they are clas-

sified as activation conditions, target conditions or correlation
conditions (the latter being exerted on both parameters). On the

other hand, time conditions express constraints over the time

distance between the activation and the target of a constraint.

Figure 1 depicts the graphical representation of an MP-

Declare model (a map). The model is inspired by the analysis

of a real-world event log2 by Mannhardt et al. [11], [12] and

refers to the healthcare process of handling patients affected

by sepsis. The process begins with the emergency room (ER)

registration. After that, if the activation condition on the

Systemic Inflammatory Response Syndrome (SIRS) criteria

attribute holds true, then intravenous (IV) antibiotics have to be

administered. The IV antibiotics activity can only occur if ER

triage was executed beforehand. Immediately after ER triage,

the ER sepsis triage follows, but with the correlation condition

that the actors carrying out the two activities differ (correlation

condition on the org:group attribute). The analysis of

lactic acid presence requires the ER sepsis triage to be run

beforehand within 0 and 3 hours (time condition).

III. DESIGN GOALS

In this section, we give a short overview of the main

design goals of RuM. All the design goals are based on the

combination of (1) the principle of “know your users” [13]

and (2) the intended purpose of RuM [5, RC7]. We identified

the target audience to be researchers and industry experts

who may have varying levels of experience with Declare or

declarative models in general. The main objective of RuM is

to provide a comprehensive toolset for working with process

mining techniques based on declarative models. Based on this,

we identified the following 4 design goals.

First, the UI must have a low threshold for use and avoid

an initial steep learning curve [14] especially since the target

audience includes users that are not necessarily familiar with

Declare. To achieve this, we decided to follow a minimalist

visual design [15] and to divide the UI into different higher-

level views based on the different tasks a user might want to

carry on such as discovering a process model or checking the

conformance of an event log.

Second, multiple different methods must be supported for

each functionality (based on [5, RC7]). To achieve this, we

selected and integrated multiple well-known Declare-based

process mining techniques into RuM (Section IV). Addition-

ally, we designed RuM in such a way that multiple process

2http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

115

RuM

Discovery Conformance Checking MP-Declare EditorLog Generation

Declare
Miner

MINERful

MP post-
processing

ExtendsExtends

Declare
Analyzer

Declare
Replayer

Data-Aware
Declare
Replayer

Alloy-
LogGenerator

MINERful Log
Generator

Chatbot
Declo

Model Editor

Event
Log

Decl
Model

Analyse

Create

Analyse

Analyse
Create &
ModifyAnalyse

Create

Fig. 2. Main functionalities of RuM

Fig. 3. Discovery UI

mining tasks can be started simultaneously. The user is thus

free to navigate the rest of the application while a process

mining task is ongoing.

Third, the functionalities in RuM should be easily reachable

(principle of reachability [13]). To achieve this, we placed the

input parameters of process mining methods into the same

views where results are displayed or at most one click away

via the use of slide-in panels. Additionally, we designed the UI

of RuM in such a way that the results of two different process

mining tasks are always at most two clicks away from each

other (via the use of a side menu for navigating the main

functionalities and a row of tabs for navigating the results).

Fourth, the parameters of different methods in the same

functionality must be similar where possible (principle of con-

sistency [13]). This is achieved by using the same input fields

for all parameters that are common for different methods. If a

parameter is specific to a selected method (for example process

discovery techniques use different pruning approaches) then

this parameter is explicitly labeled as method specific. The

same counts for the results of different methods that must also

be comparable. This was achieved by creating result views that

have identical structure regardless of which method is used.

IV. FUNCTIONAL OVERVIEW

RuM is the first software platform natively designed to

analyze processes using a rule-based approach. To this end, we

have integrated and improved existing prototypes, but also cre-

ated completely new features that enhance the user experience

during the process analysis. To cater for the interoperability of

the tool, we resort on existing standards for input and output

files, namely XES [16] for the event logs and decl [17] for the

models. The diagram in Fig. 2 illustrates the software archi-

tecture of RuM with the components implementing its main

functionalities: process discovery, conformance checking, log

generation, and model editor. A demonstration video of these

functionalities is available at: https://youtu.be/ 6IMwR SwaQ.

In the following, we describe them in detail.

116

Fig. 4. Conformance Checking UI

A. Discovery

Four methods are available for process discovery: Declare

Miner [18], MINERful [19], MP-Declare Miner [20] and MP-

MINERful. The MP variants add to the base mining algorithms

a post processing step for discovering data conditions.3

The input parameters and the results are presented in the

same view, as illustrated in Fig. 3. The discovery results can

be explored by using three complementary views: through

a process map (Declare view), a textual description (textual

view), or as a procedural model (automaton view). In the

remainder of this section, we describe them more in detail.

We remark that those views support filtering based on activity

support and constraint support thus providing the possibility

for users to show/hide outlier behaviors.

1) Declare View: The Declare view represents the discov-

ered model using the standard graphical notation for Declare

constraints. Each activity in the model is represented as a

single rectangle containing the activity name and the activity

support (i.e., the percentage of log traces in which the activity

occurs). Notice that the background of the activity rectangle

is colored based on its support for immediacy of information

conveyance. For constraints, it is possible to show or hide both

the constraint name and the constraint support.

2) Textual View: The textual view is a model representation

meant for users who are less familiar with the graphical syntax

of Declare. The aim of the textual view is to describe the model

using natural language sentences that are easy to understand

without any prior knowledge of Declare.

3) Automaton View: The automaton view displays the dis-

covered process model as a finite-state machine. This view is

meant for users who are familiar with the formal semantics of

Declare.

3Notice that all the “data-aware” versions of the techniques provided in
RuM support a richer language at the expense of lower efficiency.

B. Conformance Checking

There are three methods available for conformance check-

ing: Declare Analyzer [7], Declare Replayer [21] and Data-

Aware Declare Replayer.4 The Declare Analyzer takes as input

a model and an event log, and returns activations, violations,

and fulfillments in the log of each constraint in the model. The

Declare Replayer and the Data-Aware Declare Replayer report

trace alignments. The Data-Aware Declare Replayer can also

account for the data perspective. Both input parameters and

results are presented in the same view (Fig. 4).

The conformance checking results are presented in groups.

Each group represents the results for a specific trace or a

specific constraint. Each group can be expanded to see the

result details of that group. This allows users to explore the

results at a high level of detail while also being relatively

compact in terms of user interface. Notice that, if the result

is a trace alignment, then it is also possible to show or hide

both the activities that are inserted into the trace or removed

from the trace as a result of the alignment.

C. MP-DECLARE Editor

In order to provide a comprehensive toolset to work with

Declare process models, RuM contains a model editor that

supports not only standard Declare but also MP-Declare. The

MP-Declare editor uses the decl file format to import and

export the models. All aspects of the format are supported:

activity definitions, attribute definitions, activity-attribute bind-

ings and constraints with all the allowed data and time

conditions.

The MP-Declare editor is presented in a single view (Fig. 5).

Two slide-in panels are used, the first one for editing the

activities and the second one for editing the attributes. Editing

the constraints is done in a single table where each row

corresponds to a single constraint. The entire model is also

4https://github.com/Clyvv/DataAwareDeclareReplayer

117

Fig. 5. MP-Declare Editor UI

Fig. 6. Log Generation UI

represented visually in the same view and the visualization is

updated on-the-fly as the user is editing the model. The used

visualization devices are the same as those of the discovery

panel, i.e., the model can be visualized using the standard

Declare graphical notation, as text or in the form of an

automaton.

Finally, in the editor, users can also add constraints and data

conditions using natural language sentences. The sentences

can be provided both by voice and text. This functionality

is implemented as a simple chatbot named Declo [22].

D. Log Generation

There are two log generation methods available in RuM:

AlloyLogGenerator [17] and MINERful Log Generator [10].

The main difference between these methods from the user’s

standpoint is that the AlloyLogGenerator can also account

for the definition of activation and correlation conditions in

the input process model. Both the input parameters and the

generated log are presented in a single view as illustrated

in Fig. 6. Among other options, the user can specify the

percentage of traces that trivially satisfy the constraints in

the input model (i.e., traces that comply with the constraints

because their activation never occurs) and the percentage of

negative traces (i.e., traces that violate at least one of the

constraints in the input model). The generated log can be

exported in XES format.

V. USER EVALUATION

To assess the feasibility of RuM, we conducted a qualitative

user evaluation. Our aim was to (1) gain insights into how

users from different backgrounds perceived the application

and (2) identify means for improving it. In the following,

we will write “(obs.)” to mark findings that are based on the

observation of the participants while using the application.

118

A. Study Setup

We selected eight process analysts as participants for our

study. Four participants had little to no knowledge of Declare

(B1 to B4), but worked in the BPM field (here called BPM

experts), while the other four identified themselves as Declare

experts (D1 to D4). We chose this differentiation to particularly

study the potential differences related to their demands and

perception about RuM. Prior to the study the participants were

given access to a scenario,5 some input files,5 and the appli-

cation itself. A common scenario was used for all participants

in order to ensure the comparability of our findings.

The study was conducted via Skype by a team consisting of

a facilitator and an observer, with the facilitator guiding the

participant and the observer serving in a supporting role. It

started with the facilitator introducing the study procedure and

the application to the participants who were then asked to start

RuM on their computer, share their screen and carry out the

tasks based on the scenario provided earlier. Participants were

encouraged to think aloud, to ask questions and to point out

interesting aspects of the application during the test. Every test

was video-recorded. After finishing the tasks, the facilitator

conducted a short post-interview asking questions about the

application in general and about the tasks where the participant

appeared to have had difficulties.

Each study lasted between 45 and 60 minutes. After the end

of the study, the participants received a link to a short post-

survey5 including the System Usability Scale (SUS) [23] and

scales covering satisfaction, expectation confirmation, future

use intentions, and usefulness [24]. To analyze the collected

data, we focused on the video recordings, observations and

follow-up interviews, using the post-surveys as an additional

qualitative data point. We followed the affinity-diagramming

method [25], which yielded 540 items that were divided into

10 main clusters and 111 sub-clusters in total.

B. Study Scenario

For the study, we developed a scenario that involves com-

mon activities of a process analyst such as the discovery

of a model from an existing event log and its validation

and modification. We used the Sepsis Cases event log that

is based on real-life treatment cases2 as a basis and split

it into a training and a test set. The participants were then

first asked to use RuM to discover an initial model using the

training set (Section V-D1). Afterward, they were instructed

to check if the discovered model conforms to the test set using

different conformance checking methods (Section V-D2). The

participants were then asked to modify the discovered model

based on the results of the conformance checking and some

additional domain information (Section V-D3). Finally, the

participants were asked to use the modified model to generate

a new log (Section V-D4).

5The evaluation material is available at: https://git.io/JJIp4 (scenario);
https://git.io/JJIpu (input files); https://git.io/JJLvB (post-survey).

TABLE II
SURVEY RESULTS REPRESENTED AS AVERAGES FOR BOTH GROUPS AND

OVERALL. THE SUS SCORE RANGES BETWEEN 0 AND 100, WHILE THE

OTHER SCALES RANGE BETWEEN 1 AND 5.

Overall Declare experts BPM experts

SUS 81.875 78.75 85
Satisfaction 4.5 4.5 4.5
Expectation 4.56 4.33 4.78
Future intentions 4.167 3.833 4.5
Usefulness 4.3125 4.25 4.375

C. General Findings

Both groups of users found the UI of RuM to be usable as

evident by statements such as “nice interface” (B1), “I think
it’s a really nice tool, I really like it” (D1), “I think it’s really
cool” (D4), “I was impressed” (D4). B3 also pointed out

that everything in the user interface was understandable “after
clicking around for a few minutes” (B3). These statements are

underpinned by an average SUS score of 81.875 (a SUS score

of 69.69 is considered average, while a score above 80 is

considered to be good or excellent [26]). It was also pointed

out that there is a need for an application like RuM “I think it’s
very promising and also very much needed” (B2), “I think in
the process mining community there was really need to freshen
up Declare” (D1).

However, there was a significant difference between BPM

and Declare experts as evident by the post-survey results

(Table II). RuM was rated higher by BPM experts on all scales

except satisfaction, which was rated as 4.5 by both groups.

The largest differences between BPM and Declare experts

are in the SUS score (85 to 78.75) and future use intentions

(4.5 to 3.833). This discrepancy can point towards Declare

experts being already used to existing tools for Declare-based

process mining and potentially being less sensitive to the

improvements in the ease of use of Declare constraints.

D. Task-Specific Findings

A finding that was orthogonal to all tasks was the fact that,

when it was needed to use the result of a section as input in

another section, we deliberately did not mention exporting the

results. While the process of exporting itself was not an issue,

some participants (B2, D4) also expected the application to

have quick ways to move files from one section to another

with D4 stating “it’s a bit strange that you have to export the
model and then reopen it, the same one, in another tab” (D4).

Other findings (described in the following) were task specific.

1) Discovery: The ordering of templates in the template

selection panel of the discovery section is based on template

categories: unary templates, positive binary templates and

negative binary templates. All BPM experts had difficulties in

finding the correct templates from this panel, while the same

was observed with only one Declare expert (“ok, so they are
not alphabetically sorted”, D1). For example, B1 scrolled the

template list from end to end multiple times before finding

all the templates listed in the scenario (obs.). During the post-

interview B4 suggested to add “brief headings” (B4) because

119

that would make it “easier to quickly categorize it” (B4). It

was also mentioned that the large number of templates might

be difficult to use (“we have a lot of templates available which
is maybe not straightforward”, B3).

The second noticeable difference between the two groups

was that three out of four BPM experts started working

with the initial model that is discovered automatically by the

tool with the default parameters (obs.), while our scenario

explicitly asked them to use a different set of parameters.

None of the Declare experts had the same issue (obs.) with

only one mentioning the automatic discovery “it’s interesting
it immediately starts to discover something before I could set
the parameters” (D3). The problem was that, even if they

changed the parameters, most of the BPM experts did not

restart the discovery with the new parameters. This confusion

might be related to filters that (differently from parameters) are

applied on-the-fly to the discovered model (“I did not do that
because the map responded to some of the things I changed,
for instance when I adapted the sliders”, B2).

The model visualizations were considered good in general.

For the Declare view, it was pointed out that the way unary

constraints are displayed is “a bit more intuitive than in all
the papers” (D2) and that the constraint template labels are

useful to “help explain the notation” (D3). The textual view

was considered a useful addition as evident by statements such

as “finally a textual version, I like it” (D4) and “it’s quite
good to have this written in text” (B3). The automaton view,

however, was generally considered to be more “for theoretical
people” (D4).

Exporting the discovered model takes into account the

currently opened model visualization and also the support

filters. This means that if the user wants to export a model in

decl format then the Declare view must be selected and only

the parts of the model that are not filtered out with the support

sliders are exported. However, not all participants assumed

correctly that filters affect the exporting and some of them

needed help to export the correct model (obs.).

2) Conformance checking: The implementation of the con-

formance checking feature in RuM was generally perceived

well (“it is presented in a pleasing way”, D4, “I like this
conformance checking, well done!”, D3). Both Declare and

BPM experts had similar suggestions, comments and reported

on similar issues related to the conformance checking task of

our scenario.

One of the main differences of the conformance checking

section with respect to the other sections is that it uses two

input files (the model and the event log). This was solved

in the user interface by treating the model as the main input

of the section and the event log file as a parameter. During

the evaluation this turned out not to be a problem. Only two

participants (B2 and D2) paused for a moment before finding

how to select the event log (obs.).

Switching between the original and aligned trace in the

Declare Replayer appeared to be difficult for both groups with

only B1 not needing any help (obs.). It was not obvious for

most participants that “Show Insertions” and “Show Dele-

tions” (Fig. 4) can be used for this purpose (“I would not have
guessed the meaning of that button”, B2). Most participants

needed some time or instructions from the facilitator to make

the connection and to set the toggle buttons correctly (obs.).

It was also noted that “showing the deletion is like a negation
of a negation” (D3), which could also have been a source of

confusion.

3) Model editor: The main difference between the two

studied groups during model editing was that most of the

Declare experts (D2, D3, D4) tried at first to edit the model by

clicking on the visualization (obs.), which is not possible in

RuM. Meanwhile, all the BPM experts used the visualization

only to get an overview of the model and did not attempt

to modify it (obs.). This could appear counter-intuitive since

BPM experts are expected to be used to modifying graphical

process models. However, this phenomenon could be related

to the fact that the only existing Declare editor is a visual

editor [27].

When editing the model, we asked the participants to

remove a PRECEDENCE constraint. This turned out to be

difficult for some of them (B4, D2, D3), because in the case

of PRECEDENCE constraints the activities are presented in

reverse order (target activity before the activation activity),

when compared to other templates. This issue was specifically

pointed out by statements such as “Is this saying the same
thing or is this saying the opposite thing?” (B4), “so this is
confusing because it’s the other way around” (D2), “ah right,
the activation and target here are swapped” (D3).

There were also some issues related to the syntax of data

conditions. D1 and D2 attempted to use an equal sign instead

of the word “is” for equalities (obs.), while B3 commented

while entering the condition “I hope this is the way to write
it. . . is it so English like?” (B3). D2 suggested adding a help

button describing the syntax and D3 suggested that attributes

in the model should be recognized by the editor while typing

the data conditions.

4) Log generation: For the log generation, there were

no noticeable differences between the two groups. Multiple

participants (B1, B3, D2, D4) expected “Model Constraints”

(Fig. 6) to be somehow functional (since it appears in the

parameter panel). For example, B1 explored the constraint

list for a bit before asking “I don’t have to put anything
here?” (B1) and B3 clicked multiple times on the constraints

while exploring the generated log (obs.). In addition, multiple

participants (B2, B3, B4, D4) attempted to click on the

generated events when checking if an event was generated

with the attributes required by the model (obs.). Instead, in

the application, the attributes of the events in a trace can be

shown all together using a toggle button (Fig. 6).

VI. THREATS TO VALIDITY AND CONCLUSION

In this paper, we presented RuM, a comprehensive toolset

for rule mining. Our evaluation provides indication that the

tool is usable for novice and expert users. Novice users were

particularly satisfied about the new look of Declare and about

the effort made to improve the understandability of Declare

120

models, while Declare experts were more appreciating the fact

that RuM collects the most widespread Declare-based process

mining techniques in a single tool.
The goal of the study was to collect feedback and to

evaluate the usability of RuM for individuals with differ-

ent backgrounds. It was thus reasonable to conduct an in-

depth qualitative study with selected participants from di-

verse backgrounds related to their knowledge and experience

with Declare. Conducting a study with a small sample of

participants is common because research has shown that the

number of additional insights gained deteriorates drastically

per participant [28].
There are, however, some threats to validity associated with

this study design. First, we evaluate the use of a specific tool

by specific individuals in a specific context over a limited

period of time. Despite carefully selecting the participants and

creating a setting that is close to how the tool would be com-

monly used, it is not possible to generalize our findings beyond

our study context. In addition, the study was conducted by a

team of researchers that might potentially interpret findings

differently. We attempted to mitigate this threat by ensuring

that observations, interviews and the analysis of the obtained

data was collaboratively conducted. We also abstained from

making causal claims, instead providing a rich description of

the behavior and reported perceptions of participants.
For future work, we plan to continue developing RuM based

on the feedback received during the user evaluation, focusing

in particular on aspects that proved to be the most critical ones.

Additionally, we plan to explore the feasibility of developing a

visual editor for MP-Declare models, so that elements can be

added/deleted/modified in the graphical view directly. We also

plan to add an inventory of files that can be easily retrieved

and used throughout all the sections of the tool. This will

facilitate the construction of pipelines based on the analysis

instruments provided by the application. Another avenue for

future work is adding support for online analysis of event logs

based on Declare taking inspiration from the works presented

in [29] concerning online discovery and in [30] for process

monitoring.

Acknowledgements. The authors would like to thank all the

participants of the user evaluation for taking the time to

evaluate RuM and for providing us with invaluable feedback

on how RuM can be improved in the future. The work of A.

Alman was partly supported by the Estonian Research Council

(project PRG887). The work of C. Di Ciccio was partly sup-

ported by MIUR under grant “Dipartimenti di eccellenza 2018-

2022” of the Department of Computer Science at Sapienza

University of Rome.

REFERENCES

[1] L. Fonseca and J. P. Domingues, “ISO 9001:2015 edition- management,
quality and value,” International Journal for Quality Research, vol. 1,
no. 11, pp. 149–158, 2017.

[2] W. M. P. van der Aalst, “Process mining: Overview and opportunities,”
ACM Trans. Manage. Inf. Syst., vol. 3, no. 2, Jul. 2012.

[3] ——, Process Mining - Data Science in Action, Second Edition.
Springer, 2016.

[4] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi,
A. Marrella, M. Mecella, and A. Soo, “Automated discovery of process
models from event logs: Review and benchmark,” IEEE Trans. Knowl.
Data Eng., vol. 31, no. 4, pp. 686–705, 2019.

[5] T. Slaats, “Declarative and hybrid process discovery: Recent advances
and open challenges,” Journal on Data Semantics, vol. 9, no. 1, pp.
3–20, Mar 2020.

[6] C. Haisjackl, I. Barba, S. Zugal, P. Soffer, I. Hadar, M. Reichert,
J. Pinggera, and B. Weber, “Understanding declare models: strategies,
pitfalls, empirical results,” Software and Systems Modeling, vol. 15,
no. 2, pp. 325–352, 2016.

[7] A. Burattin, F. M. Maggi, and A. Sperduti, “Conformance checking
based on multi-perspective declarative process models,” Expert systems
with applications, vol. 65, pp. 194–211, 2016.

[8] W. M. P. van der Aalst and M. Pesic, “DecSerFlow: Towards a truly
declarative service flow language,” in WS-FM, 2006, pp. 1–23.

[9] G. De Giacomo, R. De Masellis, and M. Montali, “Reasoning on LTL
on finite traces: Insensitivity to infiniteness,” in AAAI, 2014, pp. 1027–
1033.

[10] C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating
event logs through the simulation of declare models,” in EOMAS, 2015,
pp. 20–36.

[11] F. Mannhardt and D. Blinde, “Analyzing the trajectories of patients with
sepsis using process mining,” in RADAR+ EMISA@ CAiSE, 2017, pp.
72–80.

[12] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, and
P. J. Toussaint, “Guided process discovery - A pattern-based approach,”
Inf. Syst., vol. 76, pp. 1–18, 2018.

[13] A. Dix, J. Finlay, G. D. Abowd, and R. Beale, Human-computer
interaction. Pearson Education, 2003.

[14] B. Myers, S. E. Hudson, and R. Pausch, “Past, present, and future of user
interface software tools,” ACM Trans. Comput.-Hum. Interact., vol. 7,
no. 1, pp. 3—-28, Mar. 2000.

[15] J. Nielsen, “Ten usability heuristics,” 1994, https://www.nngroup.com/.
[16] C. W. Gunther and H. M. W. Verbeek, XES - standard definition, ser.

BPM reports. BPMcenter.org, 2014, vol. 1409.
[17] V. Skydanienko, C. Di Francescomarino, C. Ghidini, and F. M. Maggi,

“A tool for generating event logs from multi-perspective declare models,”
in BPM (Dissertation/Demos/Industry), 2018, pp. 111–115.

[18] F. M. Maggi, C. Di Ciccio, C. Di Francescomarino, and T. Kala, “Parallel
algorithms for the automated discovery of declarative process models,”
Inf. Syst., vol. 74, pp. 136–152, 2018.

[19] C. Di Ciccio and M. Mecella, “On the discovery of declarative control
flows for artful processes,” ACM Trans. Manag. Inf. Syst., vol. 5, no. 4,
Jan. 2015.

[20] V. Leno, M. Dumas, F. M. Maggi, M. L. Rosa, and A. Polyvyanyy,
“Automated discovery of declarative process models with correlated data
conditions,” Inf. Syst., vol. 89, p. 101482, 2020.

[21] M. de Leoni, F. M. Maggi, and W. M. P. van der Aalst, “Aligning event
logs and declarative process models for conformance checking,” in BPM,
2012, pp. 82–97.

[22] A. Alman, K. J. Balder, F. M. Maggi, and H. van der Aa, “Declo: A
chatbot for user-friendly specification of declarative process models,” in
BPM Demos, 2020.

[23] J. Brooke, “SUS: a ‘quick and dirty’ usability scale,” Usability evalua-
tion in industry, p. 189, 1996.

[24] A. Bhattacherjee, “Understanding information systems continuance: an
expectation-confirmation model,” MIS quarterly, pp. 351–370, 2001.

[25] K. Holtzblatt, J. B. Wendell, and S. Wood, Rapid contextual design:
a how-to guide to key techniques for user-centered design. Elsevier,
2004.

[26] P. T. Kortum and A. Bangor, “Usability ratings for everyday products
measured with the system usability scale,” International Journal of
Human–Computer Interaction, vol. 29, no. 2, pp. 67–76, 2013.

[27] M. Westergaard and F. M. Maggi, “Declare: A tool suite for declarative
workflow modeling and enactment,” in BPM Demos, 2011.

[28] J. Nielsen and T. K. Landauer, “A mathematical model of the finding
of usability problems,” in INTERCHI, 1993, pp. 206–213.

[29] A. Burattin, M. Cimitile, F. M. Maggi, and A. Sperduti, “Online
discovery of declarative process models from event streams,” IEEE
Trans. Serv. Comput., vol. 8, no. 6, pp. 833–846, 2015.

[30] F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der
Aalst, “Monitoring business constraints with linear temporal logic: An
approach based on colored automata,” in BPM, 2011, pp. 132–147.

121

